

<u>Technology for Frequency Agile Digitally</u> <u>Synthesized Transmitters (TFAST)</u>

 $f/f_{max} = 450/490 \text{ GHz}$

30GHz DDS with >40 dB SFDR and >30% AC Yield

TFAST enables high-speed digitally synthesized waveforms

High-Speed Mixed Signal Circuits (DACs & ADCs) for High Dynamic Range Antenna Applications

Goal

Develop super-scaled ultra-fast Indium Phosphide (InP)
 Heterojunction Bipolar Transistors (HBTs) for use in complex mixed signal circuits enabling 3X higher circuit speed, 10X higher integration, and 10X lower power

Technical Challenges

- Super-scaled ultra-fast InP HBTs (>400 GHz)
- High yield, large-scale Integration (~20,000 transistors)
- High-speed mixed signal circuit designs, i.e. Digital-to-Analog Converters (DACs), Analog-to-Digital Converters (ADCs) and Direct Digital Synthesizers (DDSs)

Key Accomplishments

- Record 450/490 GHz of f_t/f_{max} was achieved
- Record 710 GHz Ft was demonstrated
- Record DDS operating at 30 GHz clock speed with >40 dBc Spurious Free Dynamic Range (SFDR) to 12 GHz output frequencies

Impact

- High speed, high voltage HBTs will extend mixed signal circuits (DACs, ADCs, DDSs) to operation at microwave clock frequencies.
- Revolutionize microwave systems via direct digital generation and detection of analog waveforms up to 30 GHz.
- EW, COMMS, Radar

